
RIT Computer Science • Capstone Report • 2022

Identity and Access Management Combining
Role-Based Access Control and Attribute-Based

Access Control
anonymous

Department of Computer Science
Golisano College of Computing and Information Sciences

Rochester Institute of Technology
Rochester, NY 14586
anonymous@rit.edu

Abstract—Online services and cloud computing allow users to
store and access data with their online accounts. This introduces
cybersecurity threats such as account hijacking, unauthorized
access and insider attacks, which steal valuable data. A secure
identity and access management system, which is also called
authentication and authorization, is one of the most effective
ways to protect data. This project implemented a secure au-
thentication module using Bcrypt algorithm and an efficient and
flexible access control module by combining role-based access
control and attribute-based access control. The result shows
that it takes a similar amount of effort to implement a secure
and insecure authentication module and thus the existence of
insecure authentication module is due to lack of awareness
instead of technical difficulty. Also, the composite access control
module combines the advantages of role-based access control and
attribute-based access control. The implemented access control
model also shows advantages of easy to understand and flexible
to configure compared to other models.

Index Terms—IAM; RBAC; ABAC; Access Control; Authen-
tication; Authorization; Cybersecurity

I. INTRODUCTION

With the fast development of information technology, a lot
of companies are moving their data from physical media into
digital media. This digital transition allows valuable informa-
tion to be quickly found and processed and makes information
sharing a lot easier, which provides a lot of value to many
industries, such as improving healthcare quality and lowering
costs in the healthcare industry [1]. Although the digital
transition greatly improved the productivity, it also brings
cybersecurity concerns that valuable digital information can
be accessed by users who should not access the information.
Cybersecurity risk is becoming more important with the fast
development of cloud computing. The advantage of cloud
computing is that computer resources, especially data storage
and computing power, are accessed on demand, and therefore,
cloud computing saves cost. The cost-saving is based on the
fact that hardware resources on the same physical machine is
shared between untrusted tenants. This introduces the likeli-
hood that a tenant may accidentally access data belonging to
other tenants. Another advantage of cloud computing is that it
allows people to connect from anywhere around the world with

their username and password. However, this also increases the
chances of cloud resources being misused by illegal users [2].

The type of cybersecurity threats can be mainly divided into
the following types: account hijacking, unauthorized access,
and insider attack [3]. Account hijacking is the process of
stealing a customer’s account and then using the account to
access resources. One common reason for account hijacking
is password leakage [4]. Unauthorized access is the situation
where the flaw in applications could allow attackers to access
other users’ data. Insider attacks are illegitimate accesses to
resources by persons who have some legitimate access to
other information of an organization [5]. The access can be
unintentional by the insiders who don’t have a malicious intent
or intentional by insiders who know they shouldn’t access
the information by the policy. These cybersecurity threats
not only put the value data into risk, but also may put the
organizations into legal responsibility. There are many laws
that require organizations to securely protect their data [6]. For
example, the Health Insurance Portability and Accountability
of 1996 (HIPAA) requires that access control systems must be
implemented to protected health information.

Identity and Access Management (IAM) system is one of
the most important methods to defend against the cybersecu-
rity threats discussed above [7]. Identity management, which is
also frequently called authentication, is the process to verify
that the user is trustworthy. The most common method for
authentication is online login with username and password.
The system checks the password to make sure it matches the
password with the username and then believes the action is
performed by the user. Access management, which is also
often called access control, is the process of determining
whether to allow or deny access to a resource. A properly
implemented IAM system should be able to reduce the chance
of account hijacking by identity management and reduce the
chance of unauthorized access and insider risk by access
management.

Although there have been many studies about storing pass-
word securely, many online services still store passwords as
cleartext or hash without salt, which causes frequent password

Rochester Institute of Technology 1 | P a g e

RIT Computer Science • Capstone Report • 2022

breaches [8]. Another challenge is that the widely studied
traditional access control models, such as Discretionary Access
Control (DAC), Mandatory Access Control (MAC), Role-
Based Access Control (RBAC), and Attribute-Based Access
Control (ABAC), do not meet the requirements for access
controls in today’s environment [9]. There are studies about
advanced or hybrid access control models, such as Bi-Layer
Access Control [10], Hybrid Role and Attribute Based Access
Control (HRABAC) [11] etc. Although these advanced models
have many advantages, they are complex and need a lot of
knowledge to fully understand them.

The hypothesis of this project was that it was possible to
implement an efficient and flexible access control module to
combine RBAC and ABAC. To support the hypothesis, the
project implemented a salted hash password store system and
compared the effort taken with an unsafe system. The project
also implemented an example that used the flexible access
control system mixing different access control models and then
evaluated the results to establish that the hypothesis was valid.

In section 2 of the paper, I present the background and
related works for this project. In section 3, I describe the
design ideas of this project. Section 4 and section 5 are the
implementation and results. Section 6 and 7 concludes the
project and presents future works.

II. BACKGROUND

Although there are many methods for authentication, such as
multifactor authentication by text message, biometrics authen-
tication and so on [7], the username and password are still the
most used method. Al-Aboosi, Broner et al. [8] summarized
the techniques used to store usernames and passwords and
the attacks to steal passwords. Passwords are usually stored
together with the usernames in databases such as MySQL etc.
There are mainly three types of password storage: cleartext,
hashed without salt, or hashed with salt. Store the password as
cleartext is the most basic and least secure password storage
and it has a big security risk that the software engineer with
access to the database can directly read the users’ passwords
[8]. A more secure way to store password is using hashing
algorithms to transform the password into data that cannot be
converted back. The authentication process is to hash the user
provided password using the same algorithm and compare it
with the stored hash values. This way, people with access to
the database cannot reverse the hash value into the original
password and therefore they cannot directly get the original
password. However, because passwords are usually between
5 to 12 characters [4], hackers usually precompute the hash
values for common passwords and store them in a table,
which is usually called “rainbow table”, then the hackers
can use reverse lookup to find out the original password
[8]. The modern best security practice to store password
requires adding some salt rounds when hashing a password
to add entropy [8]. The hashing with salt method prevents
attacks from “rainbow table” because the salt are large random
numbers, and it makes it hard to precompute the hashes for all
possible salts. Passwords hashed with salt still have the risk of

brute force attacks where the hackers try to compute the hash
with brute force methods. Ideally, an attacker should take a lot
of time to crack a hashed password. There are many hashing
algorithms such as MD5, SHA1, bcrypt, and Argon2. Bcrypt
is recommended because it is an adaptive method where the
hash time doubles when the cost parameter is increased by 1
[4].

In access control, the most basic access control models
are Discretionary Access Control (DAC), Mandatory Access
Control (MAC), Role-Based Access Control (RBAC), and
Attribute-Based Access Control (ABAC). There are related
works the explains the advantages and disadvantages [9],
[2]. In DAC, the access permissions are directly assigned
to specific users. This makes it too hard to use when a
company has too many resources and too many users. In
MAC, a security level is assigned to each subject and each
object, and the subject can access an object if the subject’s
security level is higher than the object’s security level. The
MAC model doesn’t support duty separation and RBAC is
made of three parts, a set of users, a set of roles, and a
set of permissions. Users are assigned into roles, and a role
have some permissions that allows some actions. Hence, in
RBAC, users get permission for their action by joining the
roles with permission. RBAC has the advantage of simpler
access administration and user permission review. It also has
several drawbacks. RBAC requires an expensive process to
define roles. RBAC usually grants more permissions than the
role requires. RBAC also is static and inflexible in dynamically
changing environments [10]. In ABAC, the permission to
perform an action is determined by access policies that use the
attributes from subjects (such as city of user), the attributes
from objects (such as size of file), and attributes from the
environment (such as time of day). ABAC has the advantage
of its fine-grained access. ABAC has a disadvantage that is
it very complicated because of the large number of attributes
and policies. Overall, DAC and MAC are not well suited to
digital businesses today and RBAC and ABAC are the main
access control models used.

There are studies trying to combine the advantages of
RBAC and ABAC and avoid their disadvantages. Bi-Layer
Access Control (BLAC) was developed by Suhair Alshehri
and Rajendra K. Raj [10] to combine RBAC and ABAC with
fewer drawbacks. BLAC uses pseudorole as the first layer
and attributed based policy as the second layer and access is
allowed only if both checks work. Hybrid Role and Attribute
Based Access Control (HRABAC) was proposed by Maria
Penelova [11] as an easy configurable, fine-grained system that
supports role hierarchy systems. HRABAC uses active subject
or active role to filter access and then it allows access when
one of the RBAC or ABAC policy matches. The Role-Attribute
Assignment Based Access Control (RAAB-AC) model [2]
provides both the flexibility and dynamicity as ABAC and the
simplicity and security as RBAC. In the RAAB-AC model,
subject attributes and object attributes are assigned to roles
and roles are assigned with permissions. During the evaluation
of the access, the subject need to fulfill all user attributes to

Rochester Institute of Technology 2 | P a g e

RIT Computer Science • Capstone Report • 2022

Fig. 1. Structure of the application.

be in the role and the object also need to fulfill all the object
attributes to be actually in the role and then the role needs to
have the permission so that the subject can access the object.

III. DESIGN

A. Identity Management / Authentication

For the implementation of authentication part, I developed
an authentication module using Bcrypt as the hashing algo-
rithm to store passwords securely.

1) Bcrypt algorithm cost selection: Bcrypt algorithm has
two advantages. The first one is that it uses a secure random
number as the hash salt. The second advantage is that it
has an adjustable cost which can be used to promote key
strength and slow down calculation to prevent brute force
attacks. Brute force attack is a brute force trials of hashing
the potential passwords to match the hashed value that the
hacker acquired. By increasing the cost and slowing down the
calculation speed, the hacker needs more time to try potential
passwords before finding a match. This adaptability is what
allows us to compensate for increasing computer power with
hardware improvement. In this process, I ran an experiment to
encrypt password at different costs and then chose a cost that
took the encryption process around 1 seconds.

2) Authentication database table: I created a database
table with two columns. One is for usernames and the other
one is for passwords which are hashed with salt by Bcrypt
algorithms. When creating a user, the username and the hashed
password are written into the table as a row. When a user logs
in, we hash the password the user provided the same way
when the user was created and then we check if the hash
matches the stored hash value. This way, we don’t store the
user’s password directly and can still verify the password.

B. Access Control / Authorization

For the authorization part, I created a database table with 3
columns. The first column is action. The second column is role
which is used for RBAC. The third column is policy which
is a text input in XML format that represents ABAC’s policy.
Both the second and the third column can be null. If the policy
is null, then the model is a RBAC. If the role is null, then it’s
ABAC. If role and policy are both not null, then it’s hybrid
where it checks the role first and then checks ABAC’s policy
by evaluating the attribute relationship.

Fig. 2. The implementation of the authentication module including class
methods and the database table.

C. Application

In this part, I created an application to show how the IAM
system worked. Figure 1 is a diagram of the relationship of the
application and the authentication and authorization module
and the IAM database. The application is a healthcare system
where there are managers, doctors, and patients. Managers can
view all patient records and use RBAC. Doctors can only view
patient records that they are the doctors and should use hybrid
AC. Patients can view anything that are for them and uses
ABAC.

IV. IMPLEMENTATION

A. Hardware and software used

In the implementation and test, the hardware used is an HP
ENVY x360 laptop with Intel(R) Core(TM) i7-1065G7 CPU
@ 1.30 GHz, 4 core/8 threads, 8 MB Cache. The machine’s
RAM has 12 GB DDR3@3200MHz. The code are mainly
written in Java (temurin-18.0.1) with IntelliJ Community Ver-
sion 2021.1 as the IDE. In addition to the libraries provided
by Java, JBcrypt library from mindrot is used as the bcrypt
algorithm implementation [12]. The database used to store the
authentication and authorization tables is MySQL Community
Server (version 8.0). The database setup are performed with
the MySQL 8.0 Command Line client.

B. Authentication

2 shows the implementation of the authentication mod-
ule. The database table named authentication has two fields:
UserName and Password. The BcryptAuthenticationModule
implements three methods: createAccount, login, and up-
datePassword. The createAccount method hashes the user’s

Rochester Institute of Technology 3 | P a g e

RIT Computer Science • Capstone Report • 2022

Fig. 3. The implementation of the authorization modules including class methods and the database tables.

password using Bcrypt algorithm and writes the hashed pass-
word into the database. The login method takes the hashed
password from the database, and checks to see if the provided
password can be hashed into the same hashed password. The
updatePassword method first checks if the originalPassword
can be hashed into the hashed password in the database, and
then hashes the new password using Bcrypt and then updates
the database with the new hashed password.

Two similar authentication modules are also implemented
with one using SHA256 and another one using clear text.

C. Authorization

Figure 3 shows the implementation of the authorization
module. The most important part of the implementation is
database table name authorization. The authorization table has
3 important fields: Action, Role, and Policy. Action is a string
that represents the action the subject wants to do, and it must
be provided. Role is a string used to say which role has access
to perform the action if provided. Policy is a text representation
of the ABAC’s policy if provided. The table can work in 3

modes: If only Role is provided and Policy is NULL, then it
is RBAC; if only Policy is provided and Role is NULL, then
it is ABAC; if both Role and Policy are provided, then it is
hybrid access control.

The Policy text should be an XML text and using the format
like
<policy><rule>

subject.name = object.ownerName
</rule></policy>
Basically, a policy is made up of rules and each rule is a

boolean equation about attributes.
An interface AuthorizationModule is defined to abstract

the access control. It contains only one method checkAccess
with 3 arguments: subject, action, and object, meaning which
subject wants to do what action to which object. For Role-
BasedAuthorizationModule, it joins the RoleAssignment table
that tells which user has which role, with the authorization
table to check if a user has access or not. For Attribute-
BasedAuthorizationModule, it uses the subjectAttributes and
objectAttributes table, together with the authorization table to

Rochester Institute of Technology 4 | P a g e

RIT Computer Science • Capstone Report • 2022

check access based on attributes. The subjectAttributes and
objectAttributes tables store each user’s or object’s attributes in
the form of key value pairs where the key is the attribute name,
and the value is the attribute value. This makes it very easy
to get the attribute value based on the attribute name. During
the evaluation, the Policy texts are read from the authorization
table, then the rules of ABAC are parsed from the text, then
the attribute values are obtained from the subjectAttributes
and objectAttributes tables, and finally the attribute values
are used to check each policy to see if the user has the
action on the object or not. An AbacUtils class was created
to provide functions to make the ABAC check easier. Without
the AbacUtils class, the code looked very confusing when they
were all in one function. The HybridAuthorizationModule first
uses the RoleAssignment table to take out the Policy from
the authorization, and then the policies are checked. Finally,
a CompositeAuthorizationModule is implemented using the
three modules. The access check first checks RBAC, then
checks hybrid AC, and finally checks ABAC because ABAC
needs to check policy one by one which takes time, so it is
the last one to check.

V. ANALYSIS

A. Bcrypt hashed value

Fig. 4. The password hash format from Bcrypt algorithm.

Figure 4 shows the hash of the password “A1b2C3d4E5”
hashed using BCrypt. As shown, the result contains the
version, the cost, the salt, and the hash of the hashed password.
BCrypt is safe against rainbow table attacks because the
algorithm hashes the password with salts and we can see that
the online rainbow table cannot crack the password protected
by BCrypt, shown in the figure 5. However, for password
hashed using MD5 and SHA256 without salt, the online
rainbow table can easily figure out the hash algorithm used
and the original password.

Table I shows that when using Bcrypt, the same password
can be hashed into totally different values, which is another
advantage of hashing with salt. But using SHA256 without
salt, the hashes are the same, making it easy to guess that
the original passwords are also the same. When using clear
text, the password is directly shown, which makes it the least
secure password storage method.

B. Bcrypt cost selection

Another advantage of Bcrypt is that its cost can be changed
so that it can defend against brute force attacks. Typically, the
longer it takes to encrypt a password, the longer it takes a
hacker to hack a password using brute force methods. Table
II shows the amount of time it takes to hash a password using

Bcrypt with different costs. As the table shows, the time taken
to hash a password increases exponentially with the increase
of cost. On the hardware used in this project, the encryption
takes 5 minutes at a cost of 22 and the cost of Bcrypt can
be at most 30. Therefore, Bcrypt can still work against a
significant computing power increase in the next following
years. Because the longer time means higher security, but I
don’t want customers to wait too long for login, therefore I
can pick a time at around 1 second. As a result, I picked the
cost of 13 as the cost to use for Bcrypt encryption.

C. Comparison of secure and insecure authentication imple-
mentation

Table III shows a comparison of the implementation of the
authentication module using Bcrypt, SHA256 and clear text.
The implementation of a secure authentication module using
Bcrypt uses 83 lines of code, while the implementation of
the least secure authentication module using clear text takes
80 lines of code. Moreover, the number of lines of code (7
for SHA256 and 6 for clear text) that are different is also
very small compared to the total number of lines. The major
difference is the function call of the Bcrypt method to hash
the password. Therefore, these data support the hypothesis
that implementation of a secure authentication system takes a
similar amount of effort compared to an insecure system. The
insecure systems that lead to password breaches are mainly
due to the lack of awareness instead of the efforts needed to
implement a secure system.

D. Role-based authorization

The role-based authorization module works by looking up
the role assignment through the RoleAssignment table and
then using the assigned role to gain access to the action. In
an example role assignment where user1 is assigned to role1,
and role1 is assigned to have read action without any policy
assigned, the result that user1 can get access to perform the
read action shows the RBAC implementation works correct.

E. Attribute-based authorization

In attribute-based authorization, the permission to perform
the action is checked by the policies. In the example where
the policy is
<policy><rule>

subject.name = object.ownerName
</rule></policy>
the subjectAttributes table stores user1:name:Alice and the

objectAttributes table stores object1:ownername:Alice, user1
can correctly gain access to read object1. The workflow is
that when the policy is parsed, I need to check if the subject’s
name is the same as object’s ownername. Because the subject
is user1 and the object is object1, I can get the subject’s name
as Alice and the object’s ownername is also Alice. Because
they are the same and therefore user1 can read object1.

Rochester Institute of Technology 5 | P a g e

RIT Computer Science • Capstone Report • 2022

Fig. 5. The rainbow table attack of password hash by different algorithms.

TABLE I
PASSWORD STORAGE COMPARISON BETWEEN AUTHENTICATION MODULES

Password Bcrypt SHA256 Cleartext
11111 $2a$13$FkEt9UHHxzekan/3w/TH4eoD3uF

DTZnQwx8idBdabyNaItNFBuJ6a
d17f25ecfbcc7857f7bebea469308be0b25809
43e96d13a3ad98a13675c4bfc22

11111

11111 $2a$13$eDmdbk49pPeN6smG6f7JrumzqIR
O6vdyEsPfNfFoqKbMYaRVnhfNm

d17f25ecfbcc7857f7bebea469308be0b25809
43e96d13a3ad98a13675c4bfc22

11111

11111 $2a$13$pnyqCqPf2wTOS1Siz56.detaGaG
p6fDha4NsWy1tH1Hzv1867XDOG

d17f25ecfbcc7857f7bebea469308be0b25809
43e96d13a3ad98a13675c4bfc22

11111

TABLE II
ENCRYPTION TIME CHANGE WITH THE CHANGE OF COST FOR BCRYPT ALGORITHM

cost 5 6 7 8 9 10 11 12 13
Time(ms) 7.4 10.4 18.0 33.4 61.2 117.8 218.9 522.8 722.6
cost 14 15 16 17 18 19 20 21 22
Time(ms) 1401.9 2734.4 5619.4 11379.3 22069.8 43822.4 83721.3 163661 325505

TABLE III
COMPARISON OF AUTHENTICATION MODULE IMPLEMENTATION

DIFFERENCES.

method lines of code different lines of code
Bcrypt 83 0
SHA256 82 7
Cleartext 80 6

F. Hybrid authorization

In the hybrid authorization model, the permission to perform
the action needs to meet both the role assignment and the
ABAC’s policy. An example is that the read permission is
allowed if the Role is role1 and the policy is

<policy><rule>
subject.name = object.ownerName

</rule></policy>
The role assignments are user1:role1, user2:role1,

user3:role2 and the subject attributes are user1:name:Alice,
user2:name:Bob, user3:name:Alice. The objectAttributes
table stores object1:ownername:Alice for the object1. Here
user1 has access to object1 through the hybrid access control
module, but user2 and user3 don’t have access. user1 has

access because user1 is in role1 and user1’s name Alice
matches object1’s ownername. user2 has no access because
its name Bob doesn’t match object1’s ownername Alice.
user3 has no access because user3 is not in role1.

TABLE IV
ACCESS CONTROL INFORMATION USED IN THE HOSPITAL DATA.

id action role policy
1 read manager NULL
2 read doctor subject.ID = object.DoctorID
3 read NULL subject.ID = object.PatientID

TABLE V
PATIENT VISIT INFORMATION USED IN THE HOSPITAL DATA.

VisitID PatientID DoctorID Date Description
visit1 patient1 doctor1 10/25/2022 cough
visit2 patient1 doctor2 10/29/2022 flu
visit3 patient2 doctor1 10/27/2022 flu

G. Hospital data management application

I built a simulated hospital data management system to
combine the authentication and authorization modules. In the

Rochester Institute of Technology 6 | P a g e

RIT Computer Science • Capstone Report • 2022

TABLE VI
USER’S ACCESS OF HOSPITAL DATA.

user records can read
manager1 visit1, visit2, visit3
doctor1 visit1, visit3
doctor2 visit2
patient1 visit1, visit2
patient2 visit3

application, a user needs to first put in his/her username and
password in order to login. After logging in successfully,
he/she can see a list of patient visit records. Different users can
see different records based on the RBAC, ABAC and Hybrid
AC models.

In this simple application, all three access control models
are used to control the access of patient visit information. Table
IV shows the 3 access control records used. The first record
is a RBAC model that any manager can read all information.
The second record is a Hybrid AC model that any doctor can
only read objects where they are marked as the doctor. The
third record uses an ABAC model that someone can read any
patient visit information with him/her as the patient.

Table V shows three visit records including information
such as DoctorID, PatientID, Date and Description for the
visit. Table VI shows five users of the hospital system and
the records that they have access to. manager1 has access to
all records based on authorization rule 1 which uses RBAC
only that any manager has read permission. doctor1 can access
visit1 and visit3 and doctor2 can access visit2. The access
is allowed by authorization rule 2 which uses Hybrid AC
such that doctors can only access visits that they are listed as
doctors. The authorization rule 3 which is ABAC only allows
patients to read visit records about them so patient1 can access
visit1 and visit2 and patient2 can access visit3.

In this application, a central authorization database table
is used to store a combination of RBAC, ABAC and Hybrid
AC authorization rules and these authorization rules can work
together so that the most appropriate authorization rules can
be used for the selected scenarios. The results show that the
composite authorization model achieves high flexibility and
configurability and reduces the complexity of the authorization
rules. Moreover, the model also provides a smooth transition
that RBAC and ABAC can be easily changed into Hybrid AC,
therefore, this composite model is friendly to users who have
less experience in access control and meets the needs of access
control experts who need granular access control.

H. Comparison of access control models

In this project, in addition to the implementation of the
common RBAC and ABAC, the main innovation is the model
of the Hybrid AC and the Composite AC (which uses RBAC,
ABAC and Hybrid AC). This innovation is built based on re-
search efforts which studied similar models such as the BLAC
model by Suhair Alshehri and Rajendra K. Raj [10] and the
RAAB-AC model by Sara Alayda et al [2]. Table VII shows
a comparison of the key characteristics. Overall, the Hybrid

AC (HyAC) and Composite AC (CompAC), like the BLAC
and RAAB-AC models, combine the advantages of RBAC
and ABAC in permission granularity and configurability. The
major difference comes from the knowledge requirement to
understand the model and flexibility of the models. Most of
the advanced models published in peer reviewed paper, such as
BLAC and RAAB-AC, although with high security, are usually
complicated and require a lot of knowledge for understanding.
On the other hand, the model from this project only requires
knowledge about RBAC and ABAC. Also, because the models
usually define many required concepts, such as the pseudorole
in BLAC and the attribute-role assignment in RAAB-AC, the
flexibility of those models are reduced. For example, some
ABAC only access may need additional dummy roles created
in the RAAB-AC model to simulate ABAC. The composite
AC model implemented in this project allows a simple rule of
RBAC only (or ABAC only) to simplify the configuration.

VI. CONCLUSION

In this work, I implemented a secure authentication module
using Bcrypt encryption algorithm and compared the efforts
between secure and insecure authentication modules. I also
implemented a composite access control module which uses
RBAC, ABAC and a hybrid AC module to validate the
hypothesis that an efficient and flexible access control module
can be implemented.

The current status of the project is that all the scheduled
work is finished, and the hypotheses are validated. Specifically,
the composite access control module which uses RBAC,
ABAC and a hybrid AC module is fully implemented using
Java and MySQL database. A demo application to simulate
hospital data shows that the access control module is very
flexible and the different AC models can be used together
to improve efficiency and flexibility. In addition, the imple-
mentation of the authentication module shows that it takes
similar amount of effort to implement a secure and insecure
authentication system and therefore the existence of insecure
authentication system are due to the lack awareness instead of
technical difficulty.

VII. FURTURE WORK

During the implementation, the most challenging work is
how to implement the ABAC policy evaluation code. The
challenge comes from the fact that the policy is defined as
strings but the attribute values for different subjects and dif-
ferent objects are different. In this project’s implementation, a
database table is used to store the key value pairs for attributes,
which makes the efficiency for policy evaluation great. But
it only works for the evaluation of policy like A = B. It
does not work for greater than, less than, comparisons, and
does not work for environment attributes such as time of day.
Future work can be done to make the policy check library
more complete and work for different types of policy rules.

ACKNOWLEDGMENT

I would like to thank Prof. Rajendra K. Raj for his help
throughout the project. His excellent courses in cybersecurity

Rochester Institute of Technology 7 | P a g e

RIT Computer Science • Capstone Report • 2022

TABLE VII
COMPARISON OF CHARACTERITICS OF ACCESS CONTROL MODELS.

Characteristics RBAC ABAC HyAC CompAC BLAC [10] RAAB-AC [2]
Granularity Low High High High High High
Configurability High Low Medium High Medium Medium
Understanding Easy Easy Easy Easy Hard Hard
Flexibility Low Medium Medium High Medium Medium

and big data analytics helped a lot in inspiring the original idea
of the project. His expertise in these fields guided the direction
of this project and ensured the finish of this project. I would
also like to thank Prof. Carlos R. Rivero for his feedback and
Prof. Hans-Peter Bischof for the guidelines for the project.

REFERENCES

[1] S. Alshehri, S. Mishra, and R. K. Raj, “Using access control to mitigate
insider threats to healthcare systems,” in 2016 IEEE International
Conference on Healthcare Informatics (ICHI), 2016, pp. 55–60.

[2] N. Almowaysher, M. Humayun, and N. Zaman, “A novel hybrid ap-
proach for access control in cloud computing,” International Journal
of Engineering Research and Technology, vol. 13, pp. 3404–3414, 01
2020.

[3] R. A. Nafea and M. Amin Almaiah, “Cyber security threats in cloud:
Literature review,” in 2021 International Conference on Information
Technology (ICIT), 2021, pp. 779–786.

[4] N. Katrandzhiev, D. Hristozov, and B. Milenkov, “A comparison of
password protection methods for web-based platforms implemented with
php and mysql,” International Journal on Information Technologies &
Security, vol. 11, no. 2, 2019.

[5] I. Homoliak, F. Toffalini, J. Guarnizo, Y. Elovici, and M. Ochoa,
“Insight into insiders and it: A survey of insider threat taxonomies,
analysis, modeling, and countermeasures,” ACM Computing Surveys
(CSUR), vol. 52, no. 2, pp. 1–40, 2019. [Online]. Available:
https://doi.org/10.1145/3303771

[6] S. P. Mulligan, W. C. Freeman, and C. D. Linebaugh,
“Data protection law: An overview,” Congressional Re-
search Service (March 2019), 2019. [Online]. Available:
https://crsreports.congress.gov/product/pdf/R/R45631

[7] I. Indu, P. R. Anand, and V. Bhaskar, “Identity and access management
in cloud environment: Mechanisms and challenges,” Engineering science
and technology, an international journal, vol. 21, no. 4, pp. 574–588,
2018.

[8] A. F. Al-Aboosi, M. Broner, and F. Y. Al-Aboosi, “Bingo: A
semi-centralized password storage system,” Journal of Cybersecurity
and Privacy, vol. 2, no. 3, pp. 444–465, 2022. [Online]. Available:
https://www.mdpi.com/2624-800X/2/3/23

[9] Z. N. Mohammad, F. Farha, A. O. Abuassba, S. Yang, and F. Zhou,
“Access control and authorization in smart homes: A survey,” Tsinghua
Science and Technology, vol. 26, no. 6, pp. 906–917, 2021.

[10] S. Alshehri and R. K. Raj, “Secure access control for health information
sharing systems,” in 2013 IEEE International Conference on Healthcare
Informatics, 2013, pp. 277–286.

[11] M. Penelova, “Hybrid role and attribute based access control applied
in information systems,” Cybernetics and Information Technologies,
vol. 21, no. 3, pp. 85–96, 2021.

[12] org.mindrot. org.mindrot>>jbcrypt>>0.4. [Online]. Available:
https://mvnrepository.com/artifact/org.mindrot/jbcrypt/0.4

Rochester Institute of Technology 8 | P a g e

